2-OXO-LABDA-8(17),13-DIEN-15-OL FROM OPHRYOSPORUS CHILCA

FERDINAND BOHLMANN, MICHAEL WALLMEYER, ROBERT M KING* and HAROLD ROBINSON*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany, *Smithsonian Institution, Department of Botany, Washington, DC 20560, USA

(Revised received 31 August 1983)

Key Word Index—Ophryosporus chilca, O peruvianus, Compositae, labdane derivatives, prenylated p-hydroxyacetophenones, cinnamyl derivative

Abstract—The aerial parts of *Ophryosporus chilca* afforded several prenylated *p*-hydroxyacetophenones, two labdane derivatives and a cinnamyl ester *Ophryosporus peruvianus* also contains prenylated *p*-hydroxyacetophenones Three compounds were isolated for the first time, their structures were established by ¹H NMR spectroscopy

The South American genus Ophryosporus (Compositae, tribe Eupatorieae) has been placed in the subtribe Critoniniae [1] So far only one species has been studied chemically [2] We have now investigated two more species from Peru The aerial parts of O chilca (HBK) Hieron afforded, in addition to known compounds, the cinnamyl ester 2 and 2-oxo-labda-8(17),13-dien-15-ol (3) together with the corresponding 2-hydroxy derivative 4, which had been isolated previously [3] The ¹H NMR spectrum (Table 1) of 3 was close to that of 4 The presence of a keto group at C-2 followed from the pairs of doublets at $\delta 2$ 19, 2 42 and 2 16, 2 33 The stereochemistry of the Δ^{13} -double bond was established from the ¹H NMR spectrum of the corresponding aldehyde 5, obtained by oxidation of 3, as the H-16 signal was shifted downfield $(\delta 2 17)$ while the other signals were nearly identical to those of 3 except for the H-15 signal which was a low-field doublet at $\delta 1000$, in the spectrum of 5 The absolute configuration of 3 and 4 was not determined

The ¹H NMR spectrum of 2 indicated the presence of a cinnamyl derivative (see Experimental) With regard to the molecular formula, pairs of doublets which were coupled with a low-field broadened double-doublet at $\delta 5$ 17 showed a β -hydroxyprenyl propionic ester

The aerial parts of *O peruvianus* (Gmel) K et R gave several widespread compounds and the new p-hydroxy-acetophenone derivative 1 The structure could be easily deduced from the molecular formula and the ¹H NMR spectrum (see Experimental), which indicated the presence of a symmetrical tetrasubstituted aromatic compound As all the signals could be assigned, the structure directly followed from the chemical shifts of the protons

The investigations of *Ophryosporus* species have shown that anol and prenylated *p*-hydroxyacetophenone derivatives may be of chemotaxonomic relevance

EXPERIMENTAL

The air-dried plant material, collected in January 1982 in Peru, was extracted with Et₂O-petrol, 1 2 (12 hr room temp), and worked up in the usual fashion Known compounds were identified by comparing 400 MHz ¹H NMR spectra with those of authentic samples The extract of the aerial parts of O chilca

(480 g, voucher RMK 9042) gave CC fractions (100 ml) as follows 1 (petrol), 2 (Et₂O-petrol, 1 10), 3 (Et₂O-petrol, 1 3), 4 (Et₂O-petrol, 1 1) and 5 (Et₂O and Et₂O-MeOH, 10 1) TLC (always SiO₂, PF 254), (Et₂O-petrol, 1 3, detection by UV light, 255 nm) of combined fractions 2 and 3 afforded 120 mg anol isovalerate [4] and 30 mg of the corresponding epoxide [4] TLC (Et₂O-petrol, 1 1) of fraction 4 gave 180 mg 3-[3,3-dimethylallyl]-p-hydroxyacetophenone (R_f 0 55), 300 mg 3-[3,3-dimethylallyl]-5-senecioyl-p-hydroxyacetophenone [5] (R_f 0 50) and 120 mg 6-acetyl-8-isovaleryl-2,2-dimethylchromene [5]

Table 1 ¹H NMR spectral data of compounds 3 and 5 (400 MHz, CDCl₃ TMS as internal standard)

2 19 dd 2 19 d 2 42 d 2 42 d 2 16 d 2 17 d 2 33 dd 2 35 d 1 66 dd 1 68 d 1 49 m 1 43 d 1 84 m 1 86 d	
2 42d 2 42d 2 16d 2 17d 2 33 dd 2 35d 1 66 dd 1 68d 1 49 m 1 43d	dd
2 16 d 2 17 d 2 33 dd 2 35 d 1 66 dd 1 68 d 1 49 m 1 43 d	
1 66 dd 1 68 d 1 49 m 1 43 s	
1 49 m 1 43 i	d
	dd
184m 186i	m
	m
205 m 207 i	m
' 2 46 ddd 2 48 d	ddd
4 538 <i>tq</i> 586 <i>t</i>	dtq
5 416 br d 1000 d	d
6 166 <i>br s</i> 217 <i>6</i>	d
7 459 br s 458 i	br s
7' 491 <i>br</i> s 4961	br s
8 070s 075s	s
9 085 <i>s</i> 080 <i>s</i>	S
0 106s 109:	S

^{*}Signals of H-1 and H-3 may be interchangeable

J (Hz) 1, 1' = 3, 3' = 13, 1', 3 = 2, 5, 6 = 3, 5, 6' = 12, 6, 7' = 25, 6', 7' = 4, 7, 7'

^{= 13, 12, 14 = 14, 16 = 1,} compound 3 14,

1514 Short Reports

 $(R_f 0.47)$ TLC (Et₂O) of fraction 5 afforded 20 mg 2 ($R_f 0.73$), 80 mg 3 ($R_f 0.62$) and 100 mg 4 ($R_f 0.42$)

The extract of the aerial parts of O peruvianus (410 g, voucher RMK 9001) gave CC fractions (100 ml) as follows 1 (petrol), 2 (Et₂O-petrol, 1 10 and 1 3), 3 (Et₂O-petrol, 1 1) and 4 (Et₂O and Et₂O-MeOH, 10 1) TLC of fraction 4 (Et₂O-petrol, 1 1) afforded 10 mg 3-[3,3-dimethylallyl]-5-senecioyl-p-hydroxy-acetophenone (R_f 0 52), 20 mg 6-acetyl-8-isovaleryl-2,2-dimethyl-chromene (R_f 0 50), 15 mg 1 (R_f 0 47) and 10 mg 3-isovaleryl-5-[1-hydroxy-3,3-dimethylallyl]-p-hydroxyacetophenone [6] (R_f 0 40) Compounds 1-3 were homogeneous by TLC in different solvent mixtures (Et₂O-petrol and CHCl₃ mixtures), but could not be induced to crystallize Quantities were determined by weight

3,5-Bis-isovaleryl-p-hydroxyacetophenone (1) IR $v_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 3520 (OH), 1680, 1640, 1592 (PhCO), MS m/z (rel int) 304 168 [M]⁺ (17) (C₁₈H₂₄O₄), 289 [M – Me]⁺ (14), 271 [289 – H₂O]⁺ (42), 247 [M – C₄H₉]⁺ (100), 229 [247 – H₂O]⁺ (20), ¹H NMR (CDCl₃, 400 MHz) 8 57 s (H-2, H-6), 2 63 s (H-8), 2 99 d (H-10), 2 32 tqq (H-11), 1 05 d (H-12, H-13) [J (Hz) 10, 11 = 11, 12 = 11, 13' = 6 5]

Cinnamyl-3-hydroxy-3-phenyl propionate (2) IR $v_{\text{max}}^{\text{CCl}}$ cm⁻¹ 3600 (OH), 1730 (CO₂R), MS m/z (rel int) 264 115 [M - H₂O]⁺ (8) (C₁₈H₁₆O₂), 131 [PhCH=CHCO]⁺ (18), 117

[PhCH=CHCH₂]⁺ (41), 104 [PhCH=CH₂]⁺ (100), CIMS (isobutane) 283 [M+1]⁺ (05), 117 [PhCH=CHCH₂]⁺ (100), ¹H NMR (CDCl₃) 7 4–7 25 m (10 H), 6 66 br d (H-7), 6 27 dt (H-8), 4 81 dd (H-9), 2 83 dd (H-8'₁), 2 77 dd (H-8'₂), 5 17 br dd (H-7') [J (Hz) 7, 8 = 1 5, 7, 9 = 1, 8, 9 = 6 5, 7', 8'₁ = 8 5, 7', 8'₂ = 4, 8'₁, 8'₂ = 16]

2-Oxo labda-8(17),13-dien-15 ol (3) IR $v_{\rm max}^{\rm CCL}$ cm $^{-1}$ 3360 (OH), 1710 (C=O), MS m/z (rel int) 304 240 [M] $^+$ (5) (C₂₀H₃₂O₂), 289 [M - Me] $^+$ (14), 205 [M - CH₂CH₂C(Me)=CHCH₂OH] $^+$ (18), 55 [C₄H₇] $^+$ (100) 3 mg 3 in 1 ml CH₂Cl₂ were stirred for 6 hr with 10 mg pyridine dichromate TLC (Et₂O-petrol, 1 1) afforded 1 mg 5, 1 H NMR see Table 1

Acknowledgements—We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemie for financial support

REFERENCES

- 1 King, R M and Robinson, H (1980) Phytologia 46, 446
- 2 Bohlmann, F and Zdero, C (1979) Phytochemistry 18, 145
- 3 Bohlmann, F, Bapuji, M, Jakupovic, J, King, R M and Robinson, H (1982) Phytochemistry 21, 181
- 4 Bohlmann, F and Zdero, C (1969) Chem Ber 102, 1692
- 5 Bohlmann, F and Grenz, M (1975) Chem Ber 108, 26